
2,6-DICYANO-1,5-DIMETHYLSEMIBULLVALENE AS A PROBE FOR HOMOAROMATIC MOLECULES OF THE DEWAR-HOFFMANN TYPE

Helmut Quast*, Josef Christ, Yvonne Gorlach, and Wolfgang von der Saal Institut fur Organische Chemie der Universität Wurzburg, Am Hubland, D 8700 Wurzburg

SUMMARY The 2,6-dicyano-1,5-dimethylsemibullvalene (2d) synthesized via the bicyclo[3 3 0]octanedione 7 exists as a classical ground state which is lower in energy by less than 5 kcal/mole than the homoaromatic transition state of the Cope rearrangement of 2d

We report an efficient synthesis of 2,6-dicyano-1,5-dimethylsemibullvalene (2d) and show with the help of low temperature ^{13}C NMR that it possesses an even lower activation barrier (< 5 kcal/mole) towards degenerate Cope rearrangement 1,2 than the parent semibullvalene (2a) 1a and 2b 2f Our results provide, therefore, the first experimental evidence in support of Dewar's 3 and Hoffmann's 4 prediction that electron accepting (A) substituents at the 1 C2,4,6,8 positions and electron donating (D) substituents at the 1 positions should afford a non-classical homoaromatic semibullvalene 1 While for neutral, closed-shell 1 r-systems such homoconjugative interaction was concluded to be destabilizing 5 , our present results imply that open-shell systems, such as two interacting allyl fragments, may result in a stable homoaromatic semibullvalene 1

Following Dewar's 3 and Hoffmann's 4 prediction we showed that the sterically unencumbered cyano group as π -electron acceptor indeed lowered significantly the activation barrier of barbaralane 3 6 Consequently, we set out to prepare 2,6-dicyano-1,5-dimethylsemibullyalene (2d) as test system, in which the use of the two methyl substituents was dictated by synthetic necessity 2f 2d seemed most interesting in view of Dewar's expectation that already two cyano groups as in 2 2c would suffice for homoaromaticity 3 b

2a
$$R^1 = R^2 = H$$
, 2b $R^1 = CH_3$, $R^2 = H$, 2c $R^1 = H$, $R^2 = CN$, 2d $R^1 = CH_3$, $R^2 = CN$

The key-intermediate for 2d, the bicyclo[3 3 0]octane 2,6-dione 7, had been obtained previously in low yield from the 1,5 dimethylbicyclo[3 3 0]octane-3,7 dione via a five step sequence ⁷ A more convenient access to substantial amounts of 7 seemed, therefore, mandatory To this end, diethyl methylmalonate was added to *ert-butyl acrylate in the presence of small amounts of sodium hydride without use of a solvent to afford the triester 4a ⁸ in 97 % yield ⁹ Selective partial hydrolysis of 4a with one mole of potassium hydroxide in methanol ¹⁰ produced 82 % of the monoacid 4b Without purification, 4b was subjected to Kolbe electrolysis ¹¹ (one mole of 4b in 400 mL methanol in the presence of 0.1 mole potassium hydroxide), affording 24 % of the tetraester 5 as a colorless, viscous oil (b. p. 100 - 130°C/ 2. 4. 10°6 torr, 1. 1 mixture of diastereomers ¹²). Dieckmann con densation of 5 under the action of three moles of potassium tert-butoxide in tetrahydrofuran proceeded almost instantaneously ¹³, furnishing the expected bicylic ß-keto ester 6 which was hydrolyzed and decarboxylated un der refluxing hydrochloric acid to the 2,6-dione 7 in 76 % yield (based on racemic 5. 14)

Conversion of the 2,6-dione 7 into the unsaturated dinitrile 9 was readily achieved 15 by addition of trimethyl silyl cyanide to 7. Using a twofold stoichiometric excess of the reagent in dichloromethane and 0.1 mole zinc iodide as catalyst, the bis (0-trimethylsilylcyanohydrin) 8 was produced in 97 % yield as a symmetrical diastereomer. An excess of phosphorus oxychloride (20 moles) in boiling pyridine converted the cyanohydrin 8 into the dinitrile 9 in 80 % yield (after sublimation at 40 °C/14 torr). NBS bromination of 9 in carbon tetrachloride occurred

diastereoselectively affording the dibromide 10 in 85 % yield. The exo, exo position of the bromine atoms in 10 was inferred in analogy to 4,8-dibromo-2,6-dicyanobicyclo[3 3 1]nona-2,6-diene, whose stereochemical assignment of the bromine atoms was confirmed by X-ray crystallography 6 Zinc-copper reagent 16 in refluxing ether debrominated 10 in 10 h furnishing 90 % of the 2,6-dicyanosemibullyalene 2d as colorless crystals after sublimation at 40 $^{50^{\circ}\text{C}/10^{-5}}$ torr, m p 142 - 144°C (decomposition) The 400 MHz proton NMR spectrum of 2d in CDCl3 at ambient temperature consisted of a sharp singlet at 1 28 (2 CH3) and two dublets with $\underline{\text{J}} = 3.9$ Hz at 4.61 (H4.8) and 5.67 ppm (H3.7), respectively

Of crucial importance for determining whether the cyano groups lower the Cope activation barrier in 2d was the low temperature carbon spectrum. The 100 61 MHz 13 C NMR spectrum of 2d in CHCIF2 - CD₂Cl₂ (4.1) at 143°C consisted of six sharp signals [13.6 (2 CH₃), 65.5 (C_{1,5}), 84.5 (C_{2,6}), 100.2 (C_{4,8}), 118.9 (2 CN), 128.0 (C_{3,7})], which did not show any signs of broadening. For comparison we calculated the coalescence temperatures of the carbon signals of the parent semibullvalene (2a) at the same spectrometer frequency, using the reported low temperature (-160°C) 13 C NMR data and the rate constants of the Cope rearrangement 1a Thus, in the 100.61 MHz carbon spectrum of semibullvalene the signals of C₁/C₅ (\triangle v = 513 Hz) and C_{2,8}/C_{4,6} (\triangle v = 9015 Hz) would coalesce at 144°C and 126°C, respectively. In harmony with the coalescence tempera-

tures derived for 2a, we found significant broadening of the $C_{2,4,6,8}$ signal in the $100\,61$ MHz carbon spectrum of the 1,5-dimethylsemibullvalene $2b^{-2f}$ in $CCl_2F_2\text{-}CD_2Cl_2$ (4.1) already at -100°C. At -123°C this signal had a half-width of 3 ppm. Consequently, in view of the lack of all signs of line-broadening in 2d down to -143°C, we conclude that the activation barrier to Cope rearrangement must be considerably lower (<5 kcal/mole) than that for semibullvalene (2a) itself

A decisive probe for potential homoaromaticity of 2d is offered by infrared spectroscopy. At room temperature in tetrachloroethene the 2,6-dicyanosemibullyalene 2d exhibits two C=N bands of equal intensity at 2218 0 and 2230 5 cm⁻¹ and a C=C frequency at 1578 8 cm⁻¹. For comparison, the 2,6-dicyanobarbaralane 3 shows two C=N frequencies at 2216 8 and 2239 7 cm⁻¹ and two C=C frequencies at 1610 4 and 1625 8 cm⁻¹ corresponding to the conjugated and non-jugated functional groups, respectively. Consequently, 2d does not possess C2-symmetry at the infrared time scale. Thus, while homoaromaticity has not yet been reached by the introduction of two cyano groups, as in 2d, the extremely low activation barrier towards the Cope rearrangement of 2d and, perhaps, the significantly smaller difference between its C=N frequencies compared to 3 may stimulate efforts to realize examples of the Dewar-Hoffmann type of homoaromaticity 18

ACKNOWLEDGEMENT The authors express their gratitude to the BASF, Ludwigshafen, and the Dynamit Nobel AG, Troisdorf, for gifts of chemicals J C thanks the Fonds der Chemischen Industrie for a grant during the preparation of his projected doctoral thesis. Financial support of this work was provided by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie.

Table 1 Melting points and IR (CHCl₃) and ¹³C NMR (100 MHz, CDCl₃), data of the bicyclo[3 3 0]octanes 7 10 Literature data are given in brackets

Cpd	m p	IR [cn	n ⁻¹]		¹³ C NMR [ppm]					
		C≅N	C=C	C _{1,5}	c _{2,6}	c _{3,7}	C _{4,8}	CN	Me	
7 ^a	97 - 98	-	-	56 6	221 1	35 9	28 8		16 5	
	(102)7,18			(56 9	221 4	36 2	29 2	-	16 8) ⁷	
8	114	2228 5	-	54 6	81 7	37 5	29 9	121 4	21 2 ^b	
9	166 167 (173) ¹⁸	2218 5	1622 0	58 2	115 2	144 2	43 0	123 4	19 9	
10	189 - 190 (dec) (190) ¹⁸	2223 3	1615 1	61 0	113 6	143 9	56 7	123 0	19 4	

a IR 1735 (1735)7 cm 1 (KBr, C=O)

b 0 90 ppm (Me₃Sı)

REFERENCES AND FOOTNOTES

- (1) (a) Cheng, A K, Anet, F A L, Mioduski, J, Meinwald, J J Am Chem Soc 1974, 96, 2887. (b) Miller, R D, Yannoni, C S Ibid 1980, 102, 7396
- (2) For substituted semibullvalenes showing degenerate Cope rearrangement see (a) Criegee, R, Askani, R Angew Chem Int Ed Engl 1968, 7, 537 (b) Liu, RSH J Am Chem Soc 1968, 90, 215 (c) Liu, RSH, Krespan, CG J Org Chem 1969, 34, 1271 (d) Anet, FAL, Schenck, GE Tetrahedron Lett 1970, 4237 (e) Zimmerman, HE, Iwamura, H J Am Chem Soc 1970, 92, 2015 (f) Askani, R Tetrahedron Lett 1971, 447 Askani, R, Kalinowski, H-O, Weuste, B Org Magn Reson 1982, 18, 176 (g) James, DR, Birnberg, GH, Paquette, LA J Am Chem Soc 1974, 96, 7465 (h) Saito, K, Mukai, T Bull Chem Soc Jap 1975, 48, 2334 (i) Askani, R, Kirsten, R, Dugall, B Tetrahedron Lett 1976, 3891 (j) Paske, D, Ringshandl, R, Sellner, J, Sichert, H, Sauer, J Angew Chem Int Ed Engl 1980, 19, 464 (k) Miller, LS, Grohmann, K, Dannenberg, JJ, Todaro, L J Am Chem Soc 1981, 103, 6249 (i) The recently reported 2,3,4,5-tetrakis(trifluormethyl)semibullvalene was assumed to be in a very rapid Cope degeneration Kobayashi, Y, Ando, A, Kawada, K, Kumadaki, I J Am Chem Soc 1981, 103, 3958
- (3) (a) Dewar, MJS, Lo, DH J Am Chem Soc 1971, 93, 7201 (b) Dewar, MJS, Náhlovská, Z, Náhlovský, BD Chem Commun 1971, 1377
- (4) Hoffmann, R., Stohrer, W-D J Am Chem Soc 1971, 93, 6941
- (5) Houk, KN, Gandour, RW, Strozier, RW, Rondan, NG, Paquette, LA J Am Chem Soc 1979, 101, 6797
- (6) Quast, H, Gorlach, Y, Stawitz, J Angew Chem Int Ed Engl 1981, 20, 93
- (7) Kırsten, R., Dissertation, Universität Gießen, West Germany, 1978
- (8) Cf Ansell, M F, Hey, D H J Chem Soc 1950, 1683
- (9) The elemental analyses, infrared, mass, and high-field ¹H and ¹³C NMR spectra of the new compounds agreed with expectation
- (10) Cf Buchi, J., Enézian, G., Eichenberger, H., Lieberherr, R. Helv. Chim. Acta, 1952, 35, 75.
- (11) Eberson, L Electro-Organic Synthesis, in Modern Synthetic Methods 1980, ed Scheffold, R, Salle, Frankfurt, Sauerlander, Aarau, Switzerland, Vol. 2, 1980, p. 1. White, D.A. Org. Synth. 1981, 60, 1, and references cited therein.
- (12) For a diastereoselective formation of the corresponding racemic tetramethylester see Mark, G, Mark, F, Margaretha, P, Polansky, E O Tetrahedron Lett 1973, 237
- (13) Cf Hagedorn III, AA, Farnum, OG J Org Chem 1977, 42, 3765
- (14) Since the Michael addition affording 4a, the partial hydrolysis of 4a, and the Kolbe electrolysis of 4b can be carried out easily on a scale of several moles using cheap starting materials and reagents, the 2,6 dione 7 is now conveniently available for preparative work. Under the Dieckmann reaction conditions meso-5 forms the anticipated trans-2,3-dimethylcyclopentanone triester, which is hydrolysed, decarboxylated and finally separated as trans 3-carboxy 2-(2-carboxyethyl)-2,3-dimethylcyclopentanone in 80 % yield (based on meso-5)
- (15) Oda, M., Yamamuro, A., Watabe, W. Chem. Lett. 1979, 1427
- (16) Corbin, TF, Hahn, RC, Shechter, H Org Synth, Coll Vol V, 1973, 328
- (17) Cf the infrared spectra of 2a (Zimmerman, H E , Binkley, R W , Givens, R S , Grunewald, G L , Sherwin, M A J Am Chem Soc 1969, 91, 3316) and 2b (determined in C₂Cl₄ for comparison) 1690 1 (w), 1657 0 (m), 1623 0 (w), 1574 6 (m), 1566 4 (s)
- (18) Professor Askani has kindly agreed to publish his work on 2d in the same issue of this Journal R Askani, Littmann, M *Tetrahedron Lett* 1982, 3651 The slightly different melting point of 2d reported by these authors most probably results from different heating rates

(Received in Germany 28 May 1982)